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Abstract— The ability for a humanoid robot to safely evolve
within a human environment is currently an important topic
of research. Generating robust whole-body movements is still
an open challenge, especially in contexts where a robot may
physically interact with people and objects. Generating complex
whole-body movements for humanoid robots is now most often
achieved with the use of multi-task whole-body controllers
based on optimization or quadratic programming. To perform
on a real robot, however, such controllers often require a
human expert to tune or optimize the many parameters of
the controller related to the tasks and to the specific robot.
This problem can be tackled by automatically optimizing
some parameters such as task priorities or task trajectories,
while ensuring constraints satisfaction, through simulation.
This approach however does not guarantee that the optimized
parameters in simulation will be optimal also for the real robot.
As a solution to help bridge this reality gap, the present paper
focuses on optimizing task priorities in a robust way by looking
for solutions which achieve desired tasks under a variety of
conditions and perturbations. This approach, which can be
referred to as domain randomization, can greatly facilitate the
transfer of optimized solutions from simulation to a real robot.
The proposed method is demonstrated using the humanoid
robot iCub for a whole-body stepping task.

I. INTRODUCTION

Applications involving humanoid robots have the potential
to bring significant benefits to society. Nevertheless, the
design of controllers for humanoid platforms is highly chal-
lenging, especially when robots are expected to physically
interact with people or the environment.

A promising approach is to use whole-body torque-control
methods, which decompose a desired complex behavior into
several simple tasks, typically framed as a stack-of-tasks [1].
Such a framework requires the tasks to be hierarchized, either
in a strict or a soft way. In strict prioritization strategies,
a fixed task hierarchy is ensured by geometrical conditions
(e.g. null space task projector) or by the use of optimization
constraints [2], [3]. Conversely, soft task prioritization can
be achieved by assigning each task a weight defining its
relative importance [4]. However, in the case of complex
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Fig. 1: Different robot models performing a whole-body
motion with several tasks. We optimize task priorities for
robustness, with the purpose to allow their transfer from the
first model to the second, and eventually to the real robot.

problems, such as whole-body motion of a humanoid robot,
the design and proper tuning of task priorities may not always
be evident, making it tedious and time consuming.

A recent line of research seeks to tackle the issue of
automatically learning whole-body task priorities [5], [6].
Since learning algorithms need a considerable number of
iterations and use a random exploration which could harm
hardware, they are usually applied in simulation. However,
inherent differences between simulated and real robots can
render an optimal solution untransferrable from one to the
other. Closing this reality gap is the central focus of recent
works in robotics [7] and related fields. One approach,
Domain Randomization (DR) [8], consists in randomizing
some aspects of the simulation to enrich the range of possible
environments experienced by the learner. For example in
[9], control policies are learned in simulation, given random
friction and control delays, and results showed that the
learned policies were also effective on the real robot. As a
result, it appears that looking for solutions which are robust,
in opposition to optimal, may allow to bridge the reality gap.

This work proposes a method to learn robust task priorities
which achieve compliant and stable whole-body motions,
while allowing to facilitate the transfer of results from
simulation to reality by taking advantage of the DR approach.
The effectiveness of the proposed method is demonstrated by
optimizing parameters in simulation, and showing that it is
possible to overcome issues stemming from large differences
between the learning domain and the testing domain.

II. METHODS

The method proposed for learning robust task priorities
relies on two main parts: (i) an optimization-based whole-
body torque-controller which tracks desired task trajectories



and sends joint torque commands to the robot, and (ii) an
optimization method as described in [10], which poses no
restrictions on the structure of the learning problem. Task
priorities are then optimized at the end of an experiment
(i.e. execution of a footstep): the fitness of the obtained
trajectories is evaluated, allowing to update the task weights.

The controller assumes the modelling of the robot as
described in [3], and the control input u to be composed
of joint torques 7 and contact forces Fo. A stack of tasks is
defined with the objectives to stabilize the center of mass
position Xc,ns, stance and swing feet pose Xgignce and
Xswing> neck orientation X,,ccx, joint positions s, as well
as to minimize joint torques 7. The torque-controller used in
this paper was developed in previous works, and described
in [11]. Here, the controller is used with the following
optimization problem using soft task priorities:

u = argmin — cost
u 2

(1a)

subject to Cu < b (1b)

where the constraint (Ib) ensures that the contact forces
remain within the associated friction cones. The cost function
(Ta) is computed as the weighted sum of all task objectives:

cost = ZwT ‘)}T(u)r + w; ‘5(u)|2 +w, |TW)]* ()
T

X 7(u) and wr are acceleration errors and weights associated
to each Cartesian task 7' (CoM, stance, swing and neck),
while w,,w, are the weights of the postural task and joint
torque regularization.

III. EXPERIMENTS

A series of experiments were performed in order to
validate empirically the hypothesis that the method described
above is capable of optimizing task priorities, in such a
way as to (i) allow the generation of robust whole-body
motions, even when contacts due to physical interaction with
the environment evolve in time and (ii) be able cope with
imperfections in the robot model, disturbances, and noise.

Experiments were conducted in simulation using the open-
source robot simulator Gazebo. They were performed with
the iCub robot, using 23 DOF on legs, arms and torso, for
whole-body torque control. The design of iCub has evolved
over the years, which has a significant impact on the inertial
properties of the robots. For instance, some models of iCub
have tethered power supply, while others have battery packs
installed on the back of the torso. This gives us a chance to
test our method on different robot models.

The controller described in was developed in Mat-
lab/Simulink, allowing to control the motion of either a
simulated or a real robot. It is applied here to the problem
of performing a step, i.e. lifting the foot off the ground and
placing it back on the ground.

The experimental procedure was divided into two main
parts: (i) training task priorities with a first model of iCub,
and (ii) validating the obtained task priorities with a different
model of iCub.

1) Training with a first iCub model: First, task priorities
were optimized on a simulated tethered iCub model, as
shown in the left part of fig. I} performing a whole-body
movement (one step). The fitness function ¢, was evaluated
in 10 separate learning experiments, in order to optimize task
priorities.
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This particular fitness function, ¢y, favors robust solutions
with ¢, by encouraging smaller excursions of the ZMP
position Pzp;p with respect to the center of the support
polygon Ogp. On the other hand, the term ¢, seeks to
maximize performance on the Cartesian tasks with a min-
imal effort. In these equations, X7,,.., Tmaz and Pzyp,, ..
are normalization factors. In case the robot was unable to
accomplish a full step, a penalty of —1.5 is added to ¢y,;.

In addition, the robot was subjected to random sets of
conditions during training, in order to achieve robustness
through DR. For each learning iteration, the following condi-
tions were randomized: Gaussian noise on input F/T sensor
signals, swing foot, motion of the swing foot, displacement
of the CoM, and a random number of random external
wrenches applied to the chest. The external wrenches not
only served to increase the robustness of the controller, but
also to promote the soft behavior of the robot in case of
physical interaction with people, while still keeping balance.

Having been verified to allow the first iCub model to suc-
cessfully perform the desired stepping motion, the following
hand-tuned task priorities were used as a starting point for
the optmization:

weom =1 (4a)
Wstance = 1 (4b)
Wswing = 1 (4¢)
Wheek = 0.1 (4d)
ws = 0.001 (4e)

w,. = 0.0001 (4f)

Then, optimized task priorities were obtained by per-
forming 200 learning iterations with applied to the control
framework, with an exploration rate of 0.1. The optimization
procedure was repeated for 10 separate trainings, allowing
to verify the consistency of the method.

2) Testing with a second iCub model: In order to validate
the robustness achieved with the optimized task priorities,
while attempting to replicate conditions similar to performing
experiments on the real robot, each one of the resulting 10
sets of optimized task priorities was tested on an iCub model
with a battery pack on the back, as shown in the middle
part of fig. [Il The robot was made to perform a sequence



TABLE I: Optimized task priorities: mean and standard
deviation obtained from 10 different training experiments

weight mean std deviation
weom 1 0
Wstance 0.9 1.3
Wswing 2.4 1.1
Wneck 0.6 1.2
Ws le—6 0
wr le—10 O
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Fig. 2: Typical CoM and feet trajectories for 6 strides
performed with the second iCub model. Each color denotes
the use of a different set of optimized weights. The x, y and
z axes correspond to the sagittal, frontal and vertical axes.

of whole-body movements (6 steps), under different noise
conditions as those used for training. It was subjected to
external wrenches on the chest, as well as Gaussian noise on
the F/T sensor and joint velocity measurements.

IV. RESULTS

The mean and standard deviation of the optimized task
priorities, as obtained with the experiments explained above,
are shown in table [Il

These task priorities, when used with the controller de-
scribed in Sec. [I1} allowed the first robot to perform one step,
under the conditions used for training. They also successfully
allowed the second robot model to perform 6 steps, under the
noise conditions mentioned previously, with a success rate
of 100%. In comparison, the starting task weights defined in
[] did not prove to be successful, showing that the optimized
weights did improve the effectiveness of the controller.

The CoM and feet trajectories achieved with the optimized
task priorities on the second robot model, illustrated in Fig.
show convergence of the robot motion. These results
demonstrate that the optimized weights allow for a higher
robustness of the controller.

V. DISCUSSION AND CONCLUSIONS

In summary, the proposed method can be used to gener-
ate robust task priorities for whole-body torque-control of
humanoids. It was demonstrated by performing training on
a first robot, then testing on a second model with different
physical properties and working conditions.

A fitness function combining robustness and performance
has shown to allow the obtention of sensible task priorities.
In the achieved results, swing foot placement, crucial for
stability at touchdown, is given high importance, while the
neck orientation task a lesser one, allowing compliance to
external perturbations (i.e. physical interactions with the
environment, such as the impact of the foot on the ground).

As for the postural task, its low priority allows it to be used
as regularization (just as joint torques), instead of competing
with Cartesian tasks.

Such a solution is interesting, as it may not have been
a priori self-evident to an expert defining task priorities.
Furthermore, the ranges over which sets of optimized weights
were obtained show that although task priorities require
proper tuning, the controller is not highly sensitive to a
precise adjustment of task weights.

Finally, the proposed method has shown to achieve com-
pliant and stable behaviors with a robot model different
than the one used for learning, and subjected to diverse
working conditions. The robustness achieved in this way is
promising and could allow higher success when passing from
simulation to real-world experiments. Upcoming work shall
provide a more extensive analysis of the method, comparing
results obtained with different fitness functions, as well as
with and without domain randomization, in order to asses
the contribution of fitness parameters and DR to the success
of the method. Our approach shall also be tested with
experiments on the real robot.
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