
  

 

Abstract— In this paper, we present an environment 
reconstruction system to generate an indoor 3D map for 
mobile robots. Using an RGB-D sensor, the robot doesn’t 
need the initial odometry. Furthermore, the system can be 
used for reconstruction of a 3D environment model by 
manually. We optimize our approach to reach 10Hz for 
the front-end and 1Hz for the back-end to fulfill the 
applications for the mobile robot. Our final goal is to 
develop the 3D SLAM systems which combine the Region 
Based Convolution Neural Network (MASK R-CNN) for 
creating a 2D semantic image and a 3D semantic map. The 
experimental results demonstrate some preliminary 
results for 3D reconstruction with an RGB-D camera for 
creating the point cloud map and the OctoMap for the 
mobile robot (Care-O-bot 4) in an indoor environment.  
 

I. INTRODUCTION 

To explore an unknown indoor environment, a mobile 
robot needs to create a map and localize itself in the map 
simultaneously. This procedure, called simultaneous 
localization and mapping (SLAM), is challenging and difficult 
to deal with visual SLAM. The major challenge with visual 
SLAM is due to the uncertainty of measurements, varying light 
conditions, and noise from the sensor. The camera can be 
described the estimated poses of the robot from RGB-D data 
can create a 3D model of an indoor environment at the same 
time. 

Mobile robots typically use wide range sensors such as 2D 
laser scanners for measuring the indoor environment with very 
high accuracy. The state-of-the-art laser-based SLAM 
(simultaneous localization and mapping) are known as [1] [2]. 
To estimate of a camera on the robot motion is known as visual 
odometry[3].  

 
In this paper, we present an approach with the small 

improvement to build a 3D map and localize in the map 
simultaneously based on RGB-D data illustrated in Fig. 2.  The 
3D environment reconstruction system can be slipped into 3 
parts, Front-End, Back-End, and mapping.   

In the Front-End part, it can be divided into three subfunction, 
which includes feature extraction, feature matching and pose 
estimation. The features from RGB images around the corner 
and edge can be extracted. Once we collect all features, it can 
be applied these features key-points for matching with the 
pervious image. In our approach, we selected the Oriented 
FAST and Rotated BRIEF (ORB) feature extraction. Based on 
the features matching results, we can estimate the 3D poses of  
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Fig. 1:  The RGB-D Camera mounted on the mobile robot 
Care-O-bot 4 [15] 
 
the any two corresponding frames using Efficient 
Perspective-n-Point (EPnP) [8]. Therefore, the robot is 
evaluated the transformation of each frames based these 
correspondences. 
 

As we mentioned the major problem in previous section, it 
will be accumulated the estimation error and cause the 
accumulating drift problem. In order to resolve this problem, 
we need to optimize the pose estimates between frames.  In the 
Back-End part, the approach is applied General Graph 
Optimization (g2o) library which is open source framework 
for optimizing nonlinear error functions [14] to reduce the 
accumulating drift ,and the approach is applied loop closure 
for detecting the previous scene to provide optimizing 
loop[12].  For the mapping part, the point cloud map (PCL) 
and OctoMap[13] are utilized to express the 3D environment 
reconstruction. The preliminary results for 3D reconstruction 
are presented in Section IV. Finally, we conclude with some 
future works in Section V. 

II. RELATED WORK 

 A classical approach to visual SLAM, the Mono SLAM is 
the first real-time monocular visual SLAM system proposed 
by A.J. Davison [4]. MonoSLAM is using EKF filter as 
backend and using sparse feature extraction as frontend. 
 
 The Parallel Tracking and Mapping (PTAM) is proposed by 
Klein [5]. It achieves not only the tracking and mapping 
parallel, but it also introduces the nonlinear optimization 
instead of traditional optimization such as EKF filter or 
particle filter. After PTAM, many kinds of research in the field 
of visual SLAM are using nonlinear optimization as a backend. 
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 The class of algorithms known as iterative closest point 
(ICP) [10], minimize the distance between two sets of point 
cloud, which can be generated from two raw scans. The ICP is 
applicable when we have in good initial guess, otherwise it is 
likely to be stuck into a local minimum. 
 
 ORB-SLAM [6] is known as backend and inherited from 
PTAM. Comparing with PTAM, there are several advantages 
for visual SLAM. It supports three types consisting of RGB-D 
cameras, stereo camera and Monocular camera. Instead of 
using Scale-invariant feature transform (SIFT) or speeded-up 
robust features (SURF) feature extraction, the frontend of 
ORB-SLAM is using ORB feature extraction. It could reduce 
the computation time and also improve consistency with 
rotation and zooming. It also uses loop closure to decrease the 
accumulating error from pose estimation.  
 

III. 3D RECONSTRUCTION 

The approach of 3D visual SLAM system consists of third 
main part, Front-End, Back-End, and mapping. The system 
architecture is illustrated in Fig. 2.                                                                                                                                   

A. Front-End 

Our implementation of the front-end consists of the third 
parts, feature extraction, feature matching and pose estimation. 
We are mainly using functions from OpenCV [7]. First, we 
extract ORB features which based on the FAST detector and 
the BRIEF descriptor proposed by Rublee et al [9], which can 
be determined landmarks by extracting descriptor vector from 
RGB image.  Once we have the descriptors, feature matching 
will become a very critical port. Generally, it solves the data 
association for the landmarks by providing a measure for 
similarity in visual SLAM system. To match a pair of 
descriptors, we use Fast Library for Approximate Nearest 
Neighbors (FLANN) method [7] in case of large of matching 
point, it takes lower computation time than using brute-force 
matcher [7]. 

After we have feature matching results, we can utilize the 
widely known Random Sample Consensus (RANSAC) [8] for 
estimating ego-motion. Generally, the model is evaluated by 
measuring the error for each pose. Consequently, this 
separates the dataset into two subsets. The inliers can be fitting 
to the model and the outliers should be ignored. We also 
propose to use the keyframe to express the most representative 
frame for Back-End, loop closure, and mapping.   

B. Back-End 

The estimated ego-motion from front-end comes with an 
accumulating drift. The back-end of the SLAM system is 
dealing with the noise problem.  

To minimize the error, the graph optimization bases on 
constraints between the nodes. We introduce the loop closure 
detection without making an assumption on the path. It is 
possible to check if the current frame matches with previous 
ones. The observation of a common point is seen in the past. It 
can trigger the new link between two poses that were 
separated. Once the graph has been initialized with the poses  

Fig. 2:  System Architecture Diagram: Processing of the 
RGB-D data 

and the constraints from the loop closures, it can trigger the 
optimization. To resolve bundle adjustment, the VSLAM can 
be defined as a least squares optimization of an error function, 
and can be described by a graph model. We use g2o which is 
an open-source library for the optimization process and to 
minimize the error. This is the method chosen to solve the 
graph problem. 

C. Mapping 

At the end of 3D environment reconstruction, the overall 
map can be built from the sequence of data. We exploit two 
methods to represent the map, one is the 3D point cloud map, 
and other is the OctoMap which can be used to overcome the 
limitations of point cloud representation with reduced memory 
resource.  



  

 

 

 

We use the octree-based framework Octomap in an efficient 
tree structure that requires less memory consumption than PCL 
map, but the resolution of Map will also decrease. The figure 
illustrates how the RGB data and depth information can be 
used to compute the sequence of 3D transformations, and 
estimation of the robot poses. Subsequently, the system can be 
created both the Point-Cloud Map and OctoMap. 

IV. RESULTS 

In this section, we show the preliminary experiential results 
illustrated in Fig.3. The data stream acquired from an RGB-D 
camera. Our approach computes the 6 DoF robot poses 
including trajectory and orientation and conduct a 3D map. 
The 3D reconstruction for indoor environment uses the 
Care-O-bot 4. The input data consisting of RGB and depth 
information for our approach is captured from an Asus Xtion 
camera, which is mounted on the robot. The map obtained 
from office and lab at Fraunhofer IPA. The preliminary results 
are running on XMG notebook with Intel Core i7-6820 
4-cores. All software packages were developed using ROS 
indigo with Ubuntu 14.04, and OpenCV 2. 

Fig 3(a) shows the result after graph optimization tracking 
created by point-cloud map with loop-closure. Thought the 
results are satisfying for small drift. Fig 3(b) shows the 3D 
Octomap after post-processing. The Octomap is valuable for 
exploration and robot navigation tasks. 

V. CONCLUSION AND FUTURE WORKS 

In this paper, we presented an approach for dealing with 3D 
environment reconstruction for mobile robot applications. We 
use a feature-based 3D SLAM approach with graph 
optimization to achieve the 3D reconstruction of an indoor 
environment. In the future, we are planning to combine the 
region based convolution neural network (MASK R-CNN) 
[11] for creating 2D semantic images and 3D semantic point 
cloud maps. The maps are allowed to provide more 
information for interacting with the indoor environment.  
Further results and experiments will be also integrated and 
tested with Care-O-bot 4. 
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