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Abstract— Deep reinforcement learning has proven to be
a great success in allowing agents to learn complex tasks.
However, its application to actual robots can be prohibitively ex-
pensive. Furthermore, the unpredictability of human behavior
in human-robot interaction (HRI) tasks can hinder convergence
to a good policy. This paper proposes an architecture that allows
agents to learn models of stochastic environments and use them
to accelerate learning. The models can be used to generate
imaginary rollouts that can supplement or even replace real
interactions. We demonstrate our architecture on a simulated
HRI task in which an agent has to respond to random human
orders.

I. INTRODUCTION

Deep reinforcement learning (RL) has been applied suc-
cessfully to a variety of problems recently such as playing
Atari games at super-human level [1], and for robot control
[2]. However, Applying RL methods to real robots can be
extremely costly, since acquiring thousands of episodes of
interactions with the environment often requires a lot of time,
and can lead to physical damage. Furthermore, in human-
robot interaction (HRI) scenarios, human actions can be
unpredictable, which can significantly impede convergence
to a good policy.

One way of alleviating these problems is to have the
agent learn a model of the environment, and use this model
to generate synthetic interaction data that can be used in
conjunction with real data to train the agent. If such a
model is stochastic in nature, then the unpredictability in
state changes can be taken into account, thus allowing more
natural interaction with humans. Much like how people learn,
an agent with a model of its environment can generate
imaginary scenarios that can be used to help optimize its
performance. This approach has garnered much attention in
the field recently, and is sometimes refered to as endowing
agents with imagination [3], [4], [5].

In this paper we propose an architecture that allows an
agent to learn a stochastic model of the environment and
use it to learn optimal policies in RL problems. The work
most similar to our own is that by Ha and Schmidhuber [5],
in which they build models of computer game environments
and use them to train agents to play. By contrast, we apply
similar techniques on actual HRI scenarios. We demonstrate
the feasibility of our architecture on a simulated HRI task
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Fig. 1. Overview of the proposed architecture. M can be trained on real
transitions and then used to generate imaginary transitions. C can then be
trained on both real and imaginary transitions.

in which the agent has to respond to random orders from a
human.

II. METHODS

Our proposed architecture consists of three parts: the
vision module (V) that produces abstract representations of
input images, the environment model (M) which generates
imaginary rollouts, and the controller (C) that learns to
map states into actions. We assume that the environment is
Markovian and is fully represented at any given time by the
input image. Figure 1 shows an overview of the architecture.

V comprises the encoder part of a variational auto-
encoder (VAE) [6], and is responsible for mapping the
high-dimensional input images into low-dimensional state
representations. All further processing of the input images
are made in this low-dimensional latent space, which is
generally computationally less expensive. The reason for
using a VAE instead of a vanilla auto-encoder is that the
VAE maps input images into a continuous region in the
latent space. This makes the environment model more robust
and ensures that its output is always meaningful and can be
mapped back into realistic images.

M is responsible for generating synthetic transitions, and
predicts future states zt+1 and the reward rt based on current
states zt and input actions at. it is implemented as a mixture
density network (MDN) [7], and learns the conditional
probability distribution of the next state P (zt+1|zt, at). The
advantage of using an MDN is that it is possible to learn a
model of stochastic environments, in which an action taken
in a given state can lead to multiple next states. This is
especially useful for use in HRI tasks, in which the human
response to actions taken by the robot cannot be expected
with certainty. The MDN is complemented by a separate
model called the r-model that learns the reward for each state-
action pair. This model is implemented as a feed-froward
neural network. To generate imaginary rollouts, M can be



seeded with an initial state from V, and then run in closed
loop where its output is fed back into its input along with
the selected action.

Lastly, C is responsible for selecting the appropriate action
in a given state. It is implemented as a simple Q-network,
and learns to estimate the action values for states.

III. EXPERIMENT

To demonstrate the viability of our proposed architecture,
we designed a simulated HRI experiment in which the agent
learns to pick and place objects as instructed by its human
partner. In the experiment, the human starts by pointing at
any one of three objects placed on a table, which the agent
picks up. The human can then either point at another object
at random, at which point the agent has to place the object
it currently holds back on the table and pick the new one,
or they can request a handover.

The task is formulated as an RL problem in which the
agent can choose from 4 discrete actions at any given time:
pick/place objects 1, 2, or 3, and perform a handover. The
agent gets a reward of +1 for correctly picking up an object,
0 for putting an object back, +5 for correctly handing over, or
-5 for choosing an incorrect action. An episode terminates if
either a handover is correctly performed, or the agent chooses
an incorrect action. The images used in the simulation were
taken using the iCub robot.

To train the system, first we trained the VAE on a set
of images that includes examples of all possible states the
agent might encounter (i.e. different combinations of object
places and gestures). The images were scaled down to
a manageable 64 × 64 resolution and compressed into 4
dimensions in the VAE. Afterwards, we trained the controller
using the standard Q-learning technique for 1000 episodes,
where the states were given by the 4-dimensional output of
the encoder part of the VAE. Concurrently, the environment
model was trained on transition data collected during these
episodes. The MDN model had 48 Gaussian components and
was trained for 4 epochs for each episode. The controller
converged to an optimal policy after around 500 episodes of
training.

To test the environment model, we trained another con-
troller entirely on imaginary data generated by the environ-
ment model. It was trained for 1000 episodes and with the
same architecture and parameters as the original. During 10
test runs, each with 100 episodes of interaction with the
real environment, the controller successfully completed 78%
of the episodes on average, compared to the 100% success
rate of the original controller. This drop in performance is
expected since the environment model is imperfect. Figure
2 shows visualizations of the states imagined by the envi-
ronment model during one imaginary rollout. The images
were created by mapping the output of the model to images
using the decoder part of the VAE. It is important here to
note that, except for the first image that seeds the model,
none of these images are real; they are entirely imagined by
the model. They represent what the model thinks is going to
happen next given a certain state-action pair. Furthermore,
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Fig. 2. A sample imaginary rollout produced by the environment model.
The images are visualizations of states imagined by the model. (a), (b),
and (c) represent the human asking the agent to pick up object, while (d)
represent a request for a handover.

each imaginary rollout results in a different scenario, which
reflects the stochastic nature of the environment.

IV. CONCLUSION

In this paper we presented an architecture that allows an
agent to learn a model of stochastic environments in an
RL setting. This allows the agent to significantly reduce
the amount of interactions it needs to make with the actual
environment. This is especially useful for tasks involving
real robots in which collecting real data can be expensive.
Furthermore, the ability to model stochastic environments
makes this approach well-suited for HRI tasks where the
actions of humans can be unpredictable. We demonstrated
the viability of our architecture in a simulated HRI task,
showing how an environment model can be learned and used
to generate imaginary rollouts.

In future work, we will explore ways to combine both
imaginary and real data to accelerate learning from scratch.
Furthermore, the approach will be applied on more complex
tasks using real robots. The architecture will be extended
to model non-Markovian environments by using recurrent
neural networks in the model. We will also investigate using
imaginary rollouts for predicting future outcomes and how
this information can be used as a sort of lookahead to further
accelerate learning.

ACKNOWLEDGMENT

This project has received funding from the European
Unions Horizon 2020 framework programme for research
and innovation under the Marie Sklodowska-Curie Grant
Agreement No.642667 (SECURE)

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[2] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[3] T. Weber, S. Racanière, D. P. Reichert, L. Buesing, A. Guez, D. J.
Rezende, A. P. Badia, O. Vinyals, N. Heess, Y. Li, et al., “Imagination-
augmented agents for deep reinforcement learning,” arXiv preprint
arXiv:1707.06203, 2017.

[4] G. Kalweit and J. Boedecker, “Uncertainty-driven imagination for con-
tinuous deep reinforcement learning,” in Conference on Robot Learning,
2017, pp. 195–206.

[5] D. Ha and J. Schmidhuber, “World models,” arXiv preprint
arXiv:1803.10122, 2018.

[6] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[7] C. M. Bishop, “Mixture density networks,” Citeseer, Tech. Rep., 1994.


