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Abstract— Spoken language can be an efficient and intuitive
way to warn robots about threats. Guidance and warnings
from a human can be used to inform and modulate a robot’s
actions. An open research question is how the instructions and
warnings can be integrated in the planning of the robot to
improve safety. Our goal is to address this problem by defining
a Deep Reinforcement Learning (DRL) agent to determine the
intention of a given spoken instruction, especially in a domestic
task, and generate a high-level sequence of actions to fulfill
the given instruction. The DRL agent will combine vision and
language to create a multi-modal state representation of the
environment. We will also focus on how warnings can be used
to shape the DRL’s reward, concentrating on the recognition
of the emotional state of the human in an interaction with the
robot. Finally, we will use language instructions to determine
a safe operational space for the robot.

I. INTRODUCTION

In the future, robots are expected to work as companions
with humans in various areas including domestic scenarios
such as care-giving. Human-robot interaction safety has not
been well studied [1]. Even with well-engineered robots, it
would be unrealistic to move robots directly from factories
to home environments to perform complex tasks [2] [3] due
to safety [4]. Moreover, robots also have to continuously
adapt to new environments to avoid hazardous actions since
using experts to program a robot for every environment is
impossible. Hence, we need adaptive learning algorithms.

Spoken language can be considered one of the most
effective communication channels to warn robots about
threats. For example, robots may not notice an external
threat or mis-planning that may harm a human or the robot
itself. However, a human can warn or guide the robot by
a verbal utterance toward a safer interaction. How robots
react to safety warnings is not addressed exhaustively in the
literature. The closest related research area is assigning tasks
to robots by verbal instructions [5], [6], [7]. They follow rule-
based methods to utilize spoken language instructions which
can cover only a limited number of scenarios.

Our goal is to train a robot to safely perform complex tasks
with the ability of processing environmental feedback, in-
cluding guidance and warnings by a human, to shape a proper
signal for updating its own policy. Therefore, our research
is focused on three capabilities of the robot: generating
high-level actions from verbal instructions, extracting reward
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from prosodic/sentiment features of the human speaker, and
learning a safe workspace for the robot.

II. FOCUS AREAS

A. Mapping Spoken Instruction to a Sequence of Actions

We introduced a framework to obtain the intention of a
given spoken instruction (e.g. ”boil water”) and generate
the sequence of actions (“moveto kettle”, “grasp kettle”,
...) to fulfill the task [8], [9]. The intention detection was
implemented with a 2 layer perceptron with 20% dropout
and trained by the TellMeDave corpus to predict one of
10 predefined classes. Our model could achieve 89.57%
accuracy in a 5-fold cross-validation.

Fig. 1. The deep reinforcement learning architecture generates the sequence
of actions. An MLP neural network is trained to approximate the action-
value functions. The compositional linguistic state, χ(t), is presented to the
network as a compositional vector which is a binary vector.



We developed a symbolics environment from the “Tell
Me Dave” Corpus [10] to train the RL agent. The main
contribution was to use a distributed symbolic state represen-
tation (e.g. {On Kettle Sink}, {Near Robot Sink}, ...) which
reduced the learning time on given tasks. Our Reinforcement
Learning was built based on the Deep Q-Network [11] ar-
chitecture with modifications to support multiple Q functions
and different types of value estimation. As shown in figure
1, there are four output groups in the network architecture.
However, the actions in the corpus have different number of
arguments (i.e. object1, object2, and preposition) from zero
to three. Therefore, we masked the gradient based on the
performed action.

In our case, the environment state was directly accessible
through the simulation while this needs to be extracted in
a real life scenario. Therefore, we will extend by encoding
vision and instruction in a fused state similar to Shu et al.
[12] in a more realistic simulator like AI2Thor [13] (see
figure 2).

Fig. 2. The modular approach using intention detection and reinforcement
learning trained for each objective to generate the sequence of actions [9].

B. Extracting Reward from the Human Speech

The robot needs to continuously process human speech to
detect implicit interruptions or any change in the instruction.
The robot is expected to be able to stop (both soft and emer-
gency) with a minimum latency in an unsafe situation (see
figure 4). We developed a reinforcement learning approach
to optimize the accuracy and latency concurrently [14].

The model (see figure 3) was consist of recurrent neural
network with Gated Recurrent Units [15] which learns a tem-
poral representation from the extracted features of speech.
The Emotion classification module (θc) used the GRU’s
output to determine emotion as angry or neutral. The action
selection (θa) which is Monte Carlo Policy Gradient (or
REINFORCE) [16] decides to either wait for the next speech
frame or terminate the processing and read the emotion
classification module. We also used the baseline estimation
(θb) to estimate a baseline reward. Similar to [17], [18], this
helps to lower the variance of the gradient signal.

As a result, our model achieved about 50% latency reduc-
tion with the same level of accuracy evaluated on the iCub
recorded data in our lab. We also improved the robustness
of emotion recognition by proposing data augmentation
techniques like overlaying background noise [19].

As future work, emotion recognition will be used to filter
warnings and to record this experience in the RL’s memory
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Fig. 3. The EmoRL model consists of 4 components: Gated Recurrent Unit
(GRU), Emotion Classification (EC), Action Selection (AS) and Baseline
Reward Estimator (BRE). The GRU encodes the acoustic information of
a speech signal which is used as a state representation. EC uses the state
representation to evaluate the probability of the human speaker being in an
angry state. AS and BRE determine the probability distribution over possible
actions and the estimation of the baseline reward [14].

Fig. 4. Extracting reward from the human speaker. The robot analyzes
continuously arriving acoustic input and only when it has enough informa-
tion to evaluate the affective state of the speaker it will output the person’s
specific emotion. The robot is trained using reinforcement learning to make
the dynamic decision: wait for more data or trigger a response [14].

for updating the agent’s policy. We will use a pre-trained
model in simulation to focus on learning new safety cases
in the real scenario.

C. Safe Human-Robot Collaboration in Manual Tasks

Safety becomes more important when humans work with
robots collaboratively. For shaping such a collaborative sce-
nario incrementally, as an initial step, we improved the
learning of the Deep Deterministic Policy Gradient (DDPG)
[20] in a reach-for-grasp task by introducing an adaptive
(larger-than-life) augmented target [21]. Later, we used it to
train a 2-DOF arm in an interactive scenario to reach multiple
target points which improved the learning time by solving the



Fig. 5. A person is solving a tangram puzzle in collaboration with a
robot arm. The robot arm is instructed to avoid the person’s workspace
while fetching puzzle pieces from the far end of the table. The top right
image shows the top view overlaid with a spatial representation which can be
learned by interaction with the user. The robot plans its motion incorporating
the adaptive spatial constraints [23].

problem in simulation and deploying it on the robot when it
gained enough confidence [22]. In a preliminary experiment
(see figure 5), we demonstrated how spoken instructions
can be mapped to a spatial representation of the robot’s
workspace which can be used as constraints for the path
planner [23]. As a next step, we are also interested to learn
grasping with verbally described spatial constraints in an
end-to-end approach.

III. CONCLUSIONS
In this PhD project, spoken instructions are used in differ-

ent areas and we focused on the high level action sequences
for performing tasks in a domestic scenario. As a next step,
we will concentrate on obtaining state representations in real
life scenarios. In parallel, we proposed a model to detect
angry emotions rapidly, which can be used as an implicit
interruption to planning to lead to a safer human-robot
interaction. As future work, we will focus on how the robot
can learn from experience to immediately avoid the same
behavior. We also investigate how teaching the operational
space to the robot can be performed intuitively. We plan
to extend this to a small kitchen scenario which can bring
together all these ways of using spoken instructions/warnings
to guide the robot towards safer interaction.
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