An Adaptive Neural Approach Based on Ensemble
and Multitask Learning for Affect Recognition

Henrique Siqueira

Abstract—In this paper, we evaluate the effect of Multitask
Learning (MTL) in an ensemble with shared representations
based on convolutional networks in the task of affect recognition
from facial expressions. Our convolutional architecture is divided
into three levels of hierarchy regarding MTL. The first level is
conditioned to learn lower-level representations, which are shared
with independent convolutional branches related to different
tasks on the second level. While each independent branch is
fostered to learn task-specific representations, the early shared
layers are fostered to learn features that are relevant to multiple
tasks due to the inductive transfer mechanism from MTL. The
third level consists of an ensemble of convolutional branches
responsible for learning higher-level representations and allowing
re-training with unlabelled expressions. Our experiments show
a slight improvement in recognition performance using MTL
over Single Task Learning (STL) on the AffectNet dataset, but
a significant reduction in training time. Finally, we discuss the
potential use of MTL and hard constraints into the inference
and re-training processes of the proposed approach to improve
its generalization performance.

Index Terms—Semi-supervised Learning, Multitask Learning,
Ensemble Methods, Facial Expression Recognition

I. INTRODUCTION

With the advance in health care, the modern society is
enjoying longer lives. The long life expectancy accompanied
by low birth rates dictate the growth of ageing populations in
several countries, which already comprise over a tenth of the
global population [1]. Besides physical health, psychological
and sociological factors have a significant impact on well-
being and good life quality in old age. Sociability, in particular,
plays a crucial role against loneliness in advanced years, which
is one of the main factors that lead older adults to experience
feelings of depression and thoughts of mortality [2].

Studies from different areas including robotics, medicine
and economics have suggested making use of social robots
as home companions and social assistants in senior care
facilities to address loneliness among older adults and to
support their needs and independence [1]. In addition to
their functional activities (e.g., dispensing of medication and
providing reminders), such robots can establish social and
affective relationships with older adults which reduce feelings
of loneliness among older people and provide warm caregiving
to them, as investigated by Pols and Moser [3].

A fundamental aspect of social robots is their affective capa-
bilities; the ability to recognize, express or even have emotions,
albeit having simulated ones [4]. Emotions are highly present
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in human interactions, by influencing our rational thinking and
decision-making [5]. Sad facial expressions and a low tone of
voice during a conversation, for instance, might encourage a
friend to comfort you [6]. A social robot capable of identifying
and using this emotional information for making decisions
could enhance its social skills by initiating an interaction
with a senior perceived as sad to support them with positive
messages. As evidenced by Sabelli et al. [7] through an
ethnographic study of a conversational agent in an elderly care
center, such emotionally support not only improve engagement
in interacting with a robot, but also reduce loneliness and
positively regulates their feelings.

Despite the remarkable progress in the area of automatic
emotion recognition (see Poria et al. [9] for a recent review
of affective computing), most of the existing approaches are
extensively trained using supervised learning techniques on
a given dataset [10], [11], which frequently drop in recog-
nition performance when trialled under different conditions
than the one used for training [12], [13]. Taylor et al. [14]
suggested that this drop in recognition performance may be
caused by the inability of those approaches to account for
individual differences, since the same emotional state can be
expressed differently among individuals [5], [15]. Even the
same person may present a high physiological variation for
the same emotional state in different days [16]. Therefore,
an emotion recognition system that could improve recogni-
tion performance over time with unlabelled expressions is
beneficial to social robots as they could be able to enhance
their emotional capabilities over interactions. This adaptive
capability is especially needed for social robots in senior care
facilities, since emotional expression variations in older adults
may be even higher due to cognitive or physical issues [17].

As investigated in our previous work [8], an ensemble with
shared representations can potentially be used as an adaptive
emotion recognition system for social robots, where emotional
expressions collected from human-robot interactions can be
utilized for re-training the ensemble. Although re-training
the system using the ensemble predictions from unlabelled
expressions led to an improvement in recognition performance
in the majority of cases, there were few cases where it
degenerated the recognition capability. We hypothesize that
providing more information about an emotional expression via
Multitask Learning (MTL) might not only yield to better gen-
eralization performance, but might also make the re-training
phase through ensemble predictions more efficient. MTL can
be defined as an inductive transfer learning mechanism where
multiple related tasks are trained in parallel using shared
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Fig. 1. Tlustration of the proposed architecture for multitask learning. While the early layers in gray learn lower-level representations useful for multiple
tasks, the three separate convolutional branches in green (top), blue (middle) and yellow (bottom) are employed to learn task-specific representations. On the
right, the ensemble of convolutional branches is adopted as proposed by Siqueira et al. [8] for learning higher-level representations for each task.

representations [18]. Several studies have demonstrated the
benefits of multitask learning on improving generalization
performance and decreasing training time in contrast to Sin-
gle Task Learning (STL) [14], [18], [19], where a machine
learning method learns only one task at a time. Devries et
al. [19] have demonstrated that facial expression recognition
can be improved by training a convolutional neural network
to detect facial landmarks as an auxiliary task in an MTL
setting. Taylor et al. [14] employed MTL to account for
individual differences for mood prediction by first clustering
them regarding personality and gender, and subsequently, each
cluster considered as a different prediction task, which resulted
in an overall improvement on the generalization performance.

In this paper, we adapt our previous approach to employ
multitask learning. Our approach consists of designing a
convolutional architecture based upon three different levels
of hierarchy regarding MTL. The first level is responsible
for learning lower-level representations from the data. These
representations are shared between multiple and independent
branches in the second level, where each branch is constrained
to learn features relevant to a particular task. In this work,
we consider as related tasks the recognition of categorical
emotional expressions (e.g., happy, sad and neutral), and the
prediction of arousal and valence levels from the dimensional
representations of emotion by Russell [20]. Lastly, the third
level is an ensemble of convolutional branches with different
expertise for each task, as described in Siqueira et al. [8]. In
addition of presenting our preliminary analysis of the effect
of MTL on the generalization performance on the AffectNet
dataset [12], we discuss the potential benefits of using multiple
information from the same input as hard constraint [21] in the
inference and re-training processes of the proposed approach.

II. APPROACH

In the proposed approach illustrated in Figure 1, the early
convolutional layers learn lower-level representations from the
training data. They are conditioned to discovery features that
are suitable to different and related tasks by the inductive
transfer learning from multiple teach signals which are back-
propagated from each task-related output to the shared rep-
resentations, as defined by Caruana [18]: “the multitask bias
causes the inductive learner to prefer hypotheses that explain
more than one task”. These lower-level representations are
shared between independent convolutional branches, each re-
lated to a specific task represented by different colors in Figure
1. The green convolutional branch, in the context of this paper,
is fostered to learn important features to distinguish categorical
emotions, where the blue and yellow branches to learn relevant
features for predicting arousal and valence, respectively. In the
highest level of the architecture, an ensemble of convolutional
branches is employed as proposed in the work of Siqueira
et al. [8]. The major goal for each branch in the ensemble
is the development of higher-level representations from the
training data that are different and complementary to other
branches’ expertise. If this assumption is satisfied, recognition
performance might be improved by re-training the ensemble
with their own predictions [8].

While multitask learning may improve the generalization
capability of a model by fostering shared layers to learn
features that are useful for different tasks, the different pieces
of information gathered for each task from the same emotional
expression might provide supplementary evidence for the cor-
rect classification of such expression. As an example, suppose
that the convolutional branches responsible for the categorical
emotion recognition classify a given expression, with a certain



degree of uncertainty, as happy or sad. Uncertainty cases may
occur when some branches classify an image as belonging to
a class A, while other branches classify the same image as
belonging to a class B. By using prior knowledge about the
task and different pieces of information from the same input,
the valence prediction could have charged the same expression
in our example as positive, and hence, the confidence for
the categorical emotion recognition could have been increased
towards the happy category. This strategy can be understood
as imposing hard constraints in the inference and training
processes, and this field of study is well explored in the book
of Gori [21]. In spite of the potential benefits of imposing hard
constraints into our approach, the experiments conducted for
this paper are limited to the analysis of the effect of MTL on
the recognition performance.

III. PRELIMINARY EXPERIMENTS
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Fig. 2. Examples of the eight discrete categories from the AffectNet dataset
[12] adopted in our experiments: Neutral (Ne), Happy (Ha), Sad (Sa), Surprise
(Su), Disgust (Di), Fear (Fe), Anger (An) and Contempt (Co).

We evaluated the proposed approach on the AffectNet
dataset [12], which consists of over a million face images col-
lected by querying search engines with emotion-related key-
words in six different languages. AffectNet is divided into the
labelled training, unlabelled training, validation and test sets.
Each set was manually annotated in terms of categorical and
dimensional representations of emotion, except the unlabelled
training set. In addition to the universal facial expressions
proposed by Ekman [22] (see Figure 2), such as Happy (Ha),
Sad (Sa), Surprise (Su), Fear (Fe), Disgust (Di), Anger (An)
and Contempt (Co), the categorical representation of AffectNet
also presents Neutral (Ne), None (No), Uncertain (Un) and
Non-Face (NF) categories. For the dimensional representation,
the dataset was annotated based on the circumplex model
of affect proposed by Russell [20], where the arousal level
indicates how excited or calm an event is, the valence level
indicates how pleasant or unpleasant an event is. Continuous
values ranging from -1 to 1 were assigned to emotional facial
expressions, whereas -2 indicates images that belong to non-
face and uncertain categories.

Our architecture is divided into three levels. The first level
consists of three convolutional layers with 64, 128 and 256
filters. These lower-level representations are shared between
three convolutional branches, one for each task: the classifica-
tion of categorical emotions, and the prediction of arousal and
valence levels. Each convolutional branch has one convolu-
tional layer with 512 filters for learning features relevant to a
specific task. Until this level, all of the convolutional layers are
followed by batch normalization and max-pooling layers with
a pool size of 2. The third and highest level is an ensemble of

TABLE I
ACCURACY (%) AND RMSE ON AFFECTNET FOR CATEGORICAL AND
DIMENSIONAL REPRESENTATIONS OF EMOTION.

[ Approaches | Categorical | Arousal [ Valence | Params |
MTL 50.32% 0.37 0.46 50M
STL 48.05% 0.39 0.47 50M
Mollahosseini et al. [12] 58.00% 0.41 0.37 180M

convolutional branches. For the categorical emotion recogni-
tion task, four branches compose the ensemble. Each branch
in the ensemble is composed of one convolutional layer with
1024 filters, followed by the global average pooling layer, and
the output layer with 8 neurons. To foster the development
of different and complementary features for the same task in
the ensemble, a different weighted loss function is assigned
for each branch. This overall configuration is also adopted in
the other two branches, which are responsible for predicting
arousal and valence levels. However, their output layers have
41 neurons each, representing the discrete counterpart of the
continuous emotional scales. This discretisation is necessary
to assign a unique weighted loss function for each branch. As
activation function, ReLU is adopted for all of the neurons,
except the output layer where the softmax function is applied.
During validation, we take the mean probability distribution
from the ensemble.

We adopt the single task learning counterparts of the pro-
posed architecture as baselines. Thus, the network trained for
categorical emotion recognition consists of five convolution
layers with 64, 128, 256 and 512 filters, followed by an
ensemble with four convolutional branches, each of which
consisting of a convolutional layer with 1024 filters, an
average pooling layer, and an output layer with 8 neurons.
In addition to the comparisons with the baseline networks,
we also compare our results with the approach proposed by
Mollahosseini et al. [12] in the AffectNet paper. In their work,
three different AlexNets [23] were re-trained on the AffectNet
dataset, outperforming traditional classifiers and off-the-shelf
facial expression recognition systems such as support vector
machines and Microsoft Cognitive Services emotion API !.
The faces are cropped using the facial coordinates provided
by the dataset, and re-scaled to 96 x 96 pixels to reduce the
computational cost. The pixel intensities from each image are
normalized between O and 1. The networks were trained for 15
epochs using RMSProp with an initial learning rate of 0.001.

A. Initial Results and Discussion

Table I shows the accuracy for the categorical classification
of emotions, the root-mean-square error (RMSE) for the
predictions of arousal and valence levels, and the number
of trainable parameters for each approach. MTL represents
the proposed approach trained for multiple related tasks in
parallel, whereas STL represents its counterpart but trained
for one task at a time. Therefore, the results reported for STL
are three different convolutional networks trained from scratch

Uhttps://www.microsoft.com/cognitiveservices/enus/emotionapi



on AffectNet. This is also true for the results reported by
Mollahosseini et al. [12]. Each AlexNet re-trained by them
has roughly 60 million trainable parameters [23], resulting in
180 million parameters for the three networks.

Although the recognition performance of MTL and STL
are similar, with the first reaching slight higher accuracy for
categorical emotion classification, and lower RMSE for the
arousal and valence predictions, the proposed approach can
be trained ¢ times faster than STL, being ¢ the number of
tasks to be learnt. The training time factor might be crucial
for the application of the proposed approach for continual
learning in robotic platforms, especially robots with limited
computational resources. When compared with the methods
proposed by Mollahosseini et al. [12], the proposed approach
has achieved a substantial lower RMSE for arousal prediction,
but has presented an inferior performance for categorical
emotion classification and valence prediction. However, the
adaptation of their methods for continual learning, where a
robot should improve its recognition performance over time
might be infeasible due to the high number of parameters.

IV. CONCLUSIONS AND FUTURE WORK

We adapted our previous work on an ensemble with shared
representation to account for multitask learning. MTL acts
as an inductive transfer learning mechanism that frequently
improves generalization performance by fostering shared rep-
resentations to learn features that are useful for different tasks.
Although the employment of multitask learning provided a
small gain in recognition performance, it provided a significant
reduction in training time since several tasks can be trained
in parallel. This training time gain is an important factor for
continual learning in social robots, since response time is
fundamental to a natural interaction. Moreover, we discussed
how different pieces of information from the same input
regarding MTL could be used as hard constraints in the
inference and training processes for improving generalization
performance.

As future work, we will analyse the internal represen-
tations related to each level of hierarchy regarding MTL
in the proposed approach. This analysis might explain the
slight improvement on generalization performance obtained
in our experiments. Furthermore, the potentiality of MLT and
hard constraints for improving generalization performance dis-
cussed in this paper will be evaluated on AffectNet, including
an analysis of the adaptive behaviour of the proposed approach
on the unlabelled training set. In addition to a static dataset
of emotions, the proposed approach will also be evaluated
in a more naturalistic condition, where not only spatial but
also temporal features are presented in the expression of the
individual emotional state [24].
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