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Abstract— Multitasking is a common issue negatively im-
pacting performance in robotic teleoperation and in particular,
as we argue, in telepresence. Operating a telepresence robot
typically involves engaging in a social interaction with other
people who are collocated with the robot, while simultaneously
having to control the robot, possibly resulting in an elevated
mental workload. One way to mitigate this adverse effect is to
have the telepresence robot execute certain tasks autonomously
- when necessary. In this extended abstract, we discuss how
mental workload measurements can contribute towards dynam-
ically allocating tasks between user and robot, so that a high
performance can be achieved, ideally throughout all ongoing
tasks. To this end, we are proposing a method for estimating
users’ mental workload from facial expressions via learned
models.

INTRODUCTION

Remotely controlling a robot in a distant environment
requires training with the control interface, and insufficient
sensory input causes users to operate with limited informa-
tion about the robot’s surroundings. Moreover, this control
task is often accompanied by additional activities, such as
social interaction in the case of robotic telepresence [1].
The result is an increased mental workload and possibly
diminished situation awareness, as users may have difficulties
taking in and processing all relevant information that is
available to them. If the operator’s workload capacity is
exceeded, this, in turn, can lead to reduced performance in
one or all of the tasks being performed [2].

Indeed, some of the above-mentioned challenges can be
mitigated by upgrading the teleoperated robot with capable
sensors and efficient user interface design [3], by way of
which a high level of situation awareness (SA) can be at-
tained and retained with less effort [4]. However, the problem
of multitasking persists regardless, and with the expectation
of future telepresence robots providing enhanced actuation
capabilities beyond navigation, users’ workload is projected
to increase even further. We argue that one potential solution
to this issue could be found in mixed-initiative adjustable
autonomy [5], in which the robot can decide to reallocate a
subset of its functions, if deemed necessary.

A mixed-initiative adjustable autonomy system allows
both human and robot to initiate a handover or takeover of
functions or entire tasks. While the human user may trigger
such a shift for any reason and at any point, the robot is
required to have clear, predefined and measurable criteria to
decide when and which task should be reallocated.

If a given task can be performed reasonably well by both
agents, i.e., human operator and robot, in at least a subset

of all possible situations (e.g., navigation), it is eligible
for dynamic assignment between them. In an adjustable
autonomy system, we identify two primary sets of criteria
for determining how the combined total of the system’s
functionalities should be distributed:

1) Task-specific: If a task is eligible for automation,
the robot needs to monitor its execution perpetually,
regardless of which agent is currently in control of it.
If the task performance falls below a preset threshold
(for longer than a preset duration), its control authority
may be shifted.

2) User-specific: Humans possess an intrinsic, yet variable
capacity for processing information that is available
to them. Human factors research involves a set of
cognitive constructs that describe users’ capacity to
understand and process information available to them
based on a multitude of cognitive constructs. Those
constructs include, among others, situation awareness
(SA) [6], [7], mental workload [8], stress and fatigue.

Obviously, these two classes are not entirely exhaustive,
as the difficulty and criticality of tasks may vary in dynamic
environments, with implications for the preference of the
respective agent being in control. That notwithstanding,
for the above-mentioned use case of teleoperated robots, a
combination of these two classes is required. For instance,
it would not make sense to assign all tasks to the human
operator just because they are better at all of them, as it
could cause mental overload and consequentially result in a
loss of overall system performance. Hence, a key requirement
of an effective mixed-initiative adjustable autonomy system
is a reliable evaluation of users’ mental states.

Here, we discuss two constructs from the human factors
and ergonomics research and their suitability as metrics for
monitoring of the operator state.

HUMAN FACTORS MEASUREMENT

As a cognitive construct, SA plays a vital role in automa-
tion - particularly when it comes to deciding on the appro-
priate level of automation (LOA) of a task or functionality.
In fact, SA, together with mental workload, are typically
in a complex interplay with the LOA and the impact on
all three of these factors needs to be carefully considered
when designing a system [9]. As a general rule of thumb,
both workload and SA can be expected to decrease as the
LOA is increased. While a low level of workload is in most
cases desired, a low level of SA can be detrimental to system
performance, as automation is often imperfect and expected



to fail in some situations. When this happens, a high degree
of maintained SA allows users to assess the situation quickly
and take appropriate measures to guide the system back to
a nominal state.

While its relevance in system design is well established,
its essence and the ways in which it is commonly measured
[10] are very closely related to task performance rather than
the operator’s general mental state. As such, it does not add
much information to our user-specific criteria class. Since
measurement of the operator state should be unintrusive,
implicit and objective, for this purpose it appears worthwhile
to examine mental workload more closely.

Mental workload is a well-studied cognitive concept,
researched in a variety of areas ranging from cognitive
psychology to applied sciences such as user design. Yet, and
even though almost everybody has an intuitive idea of what it
denotes, there exists no single universally accepted definition
of it in the literature [8], [2]. For most purposes, it could
be described as the relative degree to which an individual’s
personal mental processing capacity is exhausted by the
entirety of the mental processing that they are performing at
a given time. Thus, if their capacity is exceeded and another
task occupying the same mental resources is added, the
performance in at least one of the currently performed tasks
is expected to decline. In fact, it has been shown and is worth
noting that tasks of disparate nature (e.g., spatial vs. verbal,
visual vs. auditory) do not necessarily occupy the same
attentional resources and may be performed simultaneously
without interfering with one another [11].

In experimentation, a common way of recording sub-
jects’ workload is subjective self-reports at several points
throughout an experiment. Arguably the most widely used
tool for such reports is the NASA-TLX (Task Load Index)
questionnaire [12], which allows subjects to rate perceived
task difficulty and workload across multiple dimensions.

On the other hand, various physiological measures have
been used to estimate workload objectively [13], ranging
from slightly invasive (e.g., heart rate variability [14], skin
conductance etc.) to more invasive (EEG [15]). While some
of these methods have shown success, they lack practicability
for casual users of telepresence robots. Since in any telep-
resence robot a camera is recording the operator’s face by
design, we intend to investigate the possibility of estimating
users’ workloads from facial expressions.

PROPOSED METHOD AND EXPERIMENT

In recent years, deep neural networks have been applied
to detect a variety of features from facial expressions, such
as emotions [16], gender and age [17], arousal, etc.

In the proposed experiment we plan to have participants
perform mental tasks of varying difficulty levels and inter-
mittently report their experienced workload levels via the
NASA-TLX [12]. Throughout the experiment, their faces are
recorded with a regular RGB camera. From the collected
time series data (video footage) and the reports serving as
ground truth, we will train a recurrent convolutional neural

network [18] whose purpose will be to classify the workload
of individuals over time series segments.

CONCLUSION AND FUTURE OUTLOOK

In teleoperation, automation should be partial and selec-
tive, dynamically adapting to the current user’s condition,
skills and needs. We have discussed the two broad means
based on which performance can be evaluated - task-specific
or user-specific. The latter type, if measured accurately
enough, can function as a support for autonomous decision
making in overall task allocation between human and robot.
For mental workload, several different approaches exist as
they can be either subjective or objective, as well as more or
less invasive. In this paper, we argued for an approach that
better suits the typical requirements found in telepresence
robotics. This is what we aim to investigate in an upcoming
user study.
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