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Abstract— The paper presents research to develop the
peripersonal space (PPS) representation in robots through a
self-supervised learning procedure, which is motivated by the
development of perception and motor skills in humans. This
representation is constructed by the integration of multisensory
data from robots’ sensors (stereo cameras, artificial skin and
proprioception), and serves as spatial perception of the space
surrounding the robot body. A novel approach is proposed
to develop this representation through the design of specific
motor activities that will make use of, e.g. motor babbling
and reaching-with-avoidance. We will also show how this
representation aims to help the robot accomplish motor tasks
in complex situations, such as Human-robot Interaction (HRI).
Finally, we will describe the accomplishments and future steps
to complete the proposed plan.

I. INTRODUCTION

The abilities to adapt and act autonomously in an un-
structured and human-oriented environment are necessarily
vital for the next generation of robots, which aim to safely
cooperate with humans. While this adaptability is natural and
feasible for humans, it is still very complex and challenging
for robots.

Many neuroscientific findings show that there are multi-
sensory integration processes occurring in humans to repre-
sent the space close to the body that is termed peripersonal
space (PPS) [1]. The PPS serve as a “safety margin” to
facilitate objects manipulation [2], [3] and to ease a variety of
human actions such as reaching and locomotion with obstacle
avoidance [2], [4]. Notably, this is not the case for the far
space away from the human body [5]. Moreover, this spatial
representation is incrementally trained and adapted (i.e. ex-
panded, shrunk, enhanced, etc.) through motor activities, as
reported in [1], [4], [6], and more.

Those results suggest that by exploiting motor activities in
exploratory tasks, agents can on the one hand develop their
perception of the space around their bodies, and on the other
hand use the spatial representation they have built to improve
the quality of their motor skills.

The goal of this research is to construct a PPS rep-
resentation for the upper body of a humanoid robot by
leveraging on the repertoire of its motor actions, and then
to use such enhanced spatial perception to finally refine the
motor capabilities of the robot, especially in cluttered and
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dynamic environments. Specifically, the proposed research
aims to contribute to the understanding and propose models
and implementations pertaining to the following points:

• Mechanisms of development and learning of PPS rep-
resentation from visual, tactile, and proprioceptive in-
formation;

• The interaction of motor skills (such as reaching capa-
bilities) and multimodal perception;

• The utility of new adaptive PPS representations in
control settings – in particular planning and reaching
with simultaneous obstacle avoidance.

The developed models and algorithms will then be vali-
dated on the iCub humanoid robot for human-robot interac-
tion in a cluttered environment.

II. RELATED WORKS
Computational models: Serino et al. [6] and Maggoso

et al. [7], [8] analyzed two neural networks to deal with
audiotactile and visuotactile stimuli, respectively. They both
suggest bio-inspired networks for the PPS representation, and
then assign the connection weights that model the neuronal
plasticity. The models were only tested without a body and
only in a simple static scenario, assuming body parts to be
still. Moreover, they have not designed a training procedure,
except for the tool-use case presented in [8].

Robotics models: Roncone et al. [9] proposed a model
to investigate an integrated representation of visual and
tactile sensors. The outcome is a visual collision predictor of
objects being close to a robot’s body, which is constructed
by visuo-tactile contingency. This model can be used for
a simple reaching/avoidance controller. However, they rely
on a well-structured visual tracker for data collection and
a priori knowledge of a robot kinematic model for frame
transformation (between different sensory sources) rather
than via autonomous learning.

Antonelli et al. [10] and Chinellato et al. [11] adopted
radial basis function networks to construct the mapping
(forward and inverse transformations) between stereo visual
data and proprioceptive data by performing gazing and reach-
ing activities. Their mapping requires markers for feature
extraction with known disparity, and is apparently beneficial
only for multi-sensory transformation and not as a spatial
perception of the body’s surroundings.

On the other hand, Contla [12] focused on the plastic
nature of PPS to account for the modification the body
undergoes, and on the impact of this plasticity on the
confidence levels of reaching activities. The hypothesis is
validated only in a simulated environment. Contla’s work



is mainly concerned with the reachable space of the robot,
whereas we focus on the PPS as “margin of safety” instead
(see Section I).

The above review makes evident that the current research
is very little regarded with building a model of the PPS
through self-supervised learning as well as its exploitation
to enhance the robot motor capabilities.

III. GENERAL APPROACH

To tackle the research questions, we propose a general
approach for the project as follows:

• We evaluate and extend the PPS model of Roncone et
al. [9] for the Human-robot Interaction (HRI) scenario,
where the learned PPS representation serves as a colli-
sion predictor against the visually detected obstacles and
as an aggregation of physically detected collisions (via
tactile sensors). This guarantees the safety for robot’s
interaction with environments. Also, a robot control
system for interaction scenarios needs designing with
a master motion planner and a controller;

• We introduce a modulation of the PPS representation for
adaptive robot behavior. The modulation can result in
expanding or shrinking the “safety margin” depending
for example on the properties of the relevant objects
in the scene (e.g. fragile, threatening) or on the social
context of the interaction. As a result, the robot will
be able to interact with human partners in a shared
workspace according to different internal states (e.g.,
relaxed vs. stressed);

• We finally propose a novel PPS model utilizing a neural
network to integrate multi-sensory information from the
stereo-vision, distributed skin and proprioception, which
aims to seamlessly substitute the model of Roncone et
al. in HRI architecture. The main purpose of the alterna-
tive model is to overcome the limitations of the available
one (i.e. based on a priori robot’s kinematic model,
using visual tracker), and to enable the autonomous
action-based learning procedure.

IV. EXPERIMENTS & RESULTS

In this section, we briefly describe our accomplishments
in realizing the final aim of the project.

A. Motion planning algorithm for robotic manipulators in
dynamic environment

In [13], we present a fast heuristic motion planning
algorithm designed for a humanoid robot that employs the
sampling-based RRT* algorithm directly in the Cartesian
space and in a hierarchical fashion: (i) a collision-free path is
planned for the end-effector; (ii) corresponding collision-free
points for every via-point are searched for the robot elbow.
The method is then validated in diverse scenarios, comprising
batch run-time measurements, tests for asymptotic optimality
and benchmarks against state-of-the-art.

The results demonstrate that our solution delivers real-
time performance (generates path plans in a fraction of
second on a standard PC) in the vast majority of cases

in a significantly cluttered environment. Second, the results
suggest that asymptotic optimality of the plans is preserved
even for the additional control points. Third, a comparison
with state-of-the-art algorithms on the same scenario shows
that solutions cannot be found in reasonable time (less than
10s) when using other algorithms.

This method was applied to the iCub in real settings in the
frame of the EU Project WYSIWYD 1 where our method
guaranteed collision-free for robots’ motion in a table top
scenario.

B. Compact real-time avoidance of a humanoid robot for
Human-robot Interaction

Taking inspiration from PPS representations in humans,
we present a framework on the iCub humanoid that dynam-
ically maintains such a protective safety zone, composed of
the following main elements: (i) a visual human 2D key-
points estimation pipeline employing a deep learning based
algorithm, extended into 3D using disparity; (ii) a distributed
adaptive PPS representation around the robot’s body parts,
augmented from [9]; (iii) a visually reactive controller that
incorporates all obstacles entering the robot’s safety zone
on the fly into the task (see [14]). The proposed solution is
flexible and versatile since the safety zone around individual
robot and human body parts can be selectively modulated
(e.g stronger avoidance of the human head compared to rest
of the body). Our system works in real time and is self-
contained, with no external sensory equipment and use of
onboard cameras only.

Pilot experiments in physical HRI scenario, i.e. reaching
static target or following a trajectory with human experi-
menter interfering, demonstrate that an effective safety mar-
gin between the robot’s and the human’s body parts is kept
during interaction.

C. Merging physical and social interaction for effective
human-robot collaboration

We extended the work in [14] by designing a complete
system in [15] (shown in Fig. 1) that merges elements of
physical and social HRI, namely:

• A compact human-centered visual perception system for
humanoid robots, which can detect human pose, and
also recognize and track humans’ manipulating objects;

• A simple symbolic “storage” of humans, objects, tools
information to support social interaction, which contains
the knowledge representations converted from perceived
sensory representations of an environment;

• A visuo-tactile reactive controller that exploits the
stereo-vision and the artificial skin of the iCub to allow
the robot to safely react in both pre- and post-collision
phases corresponding to visual and tactile stimuli re-
spectively.

Through two interaction experiments (i.e. human-robot
and robot-human object hand-over), we show that the com-
plete system works in real-time controlling the robot’s activ-
ities while guaranteeing safety for the human experimenter.

1wysiwyd.upf.edu
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Fig. 1. Overview of the overall system comprising perception (right side) and action (left side) pathways.

The proposed visual perception system was also utilized
to replace the wearable sensory suit for human tracking task
in an ergonomic and reconfigurable Human-robot Collabo-
ration [16]. The comparison results of tracking experiment
(between our vision system and the wearable suit) prove the
effectiveness and feasibility of our replacement for industrial
application.

D. Learning visuomotor mapping in simulation and trans-
ferring to real world for robotics manipulation tasks

Recently, we design a framework to learn the visuomotor
mapping in a single step [17] rather than considering the
two problems (i.e. robot’s kinematic modeling and visual-
based pose estimation) independently and finding an offset
mapping subsequently as in classical approach [18]. More
specifically, we suggest to learn the mapping from an impre-
cise model in simulation using two components (as shown
in Fig. 2): (i) A deep neural network (DNN) estimates the
arm’s joint configuration given images captured with the
two eyes of the simulated robot and the corresponding head
configuration. (ii) An image-to-image translation method
bridges the domain gap to allow application of the DNN in
the real world, since the image statistics between simulation
and real world differ significantly.

In various experiments, we first show that the visuomotor
predictor provides accurate joint estimates of the iCub’s hand
in simulation, and also can be used to obtain the systematic
error of the robot’s joint measurements on the physical iCub
robot. We demonstrate that a calibrator can be designed to
automatically compensate this error, and then validate that
this enables accurate reaching of objects while circumventing
manual fine-calibration of the robot.

V. CONCLUSIONS & FUTURE WORKS

In this paper, we have proposed a bio-inspired approach
(i.e. learning via motor activities) to integrate the multi-
sensory information (i.e. visual, tactile and proprioceptive)
forming the spatial perception of surroundings for humanoid
robots–peripersonal space representation, and to develop the
sensorimotor competences from that enhanced perception. In
addition, we have presented our achievements that consists
in the design and realization of a Multiple Cartesian point
motion planning algorithm, Visuo-tactile control system for
HRI and Visuomotor learning framework, which were all
successfully published ([13], [14], [17], [19], [20]) or sub-
mitted ([15], [16]).

The successive step will be concerned with extending the
visuomotor mapping model [17] to additionally incorporate
the tactile input. An action based learning process will also
rely on our proposed motor babbling method [17], extended
such that it can deal with a cluttered environment with
randomly allocated obstacles. The simulation environment
will be mainly exploited for data collection due to the safety,
while domain adaptation methods like domain randomiza-
tion, image-to-image translation will be used for bridging
the reality gap. The resulting model will be used to estimate
the spatial and temporal information of possible collisions
of the robot’s arm with visually detected objects, such that
robot’s collision-free motion planning can be generated. An
advantage of the proposed method is that visual stimuli
can be mapped directly into joint space in real-time, where
well-established motion planning techniques such as Rapidly
exploring Random Trees (RRT*) and Probabilistic RoadMap
(PRM*) [21] can be applied.
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Fig. 2. Overview of the overall learning framework. Images obtained
using a simulator are first being implanted with real background, and
then CycleGAN [22] is used to synthesize realistically looking “sim2real”
images. These are used as inputs to a deep neural network along with the
head joints obtained from the simulator. The aim of the deep network is to
estimate the arm joint configuration.
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